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Abstract New fundamental solutions for micropolar fluids are derived in explicit form for two- and three-
dimensional steady unbounded Stokes and Oseen flows due to a point force and a point couple, including the
two-dimensional micropolar Stokeslet, the two- and three-dimensional micropolar Stokes couplet, the three-dimen-
sional micropolar Oseenlet, and the three-dimensional micropolar Oseen couplet. These fundamental solutions do
not exist in Newtonian flow due to the absence of microrotation velocity field. The flow due to these singularities is
useful for understanding and studying microscale flows. As an application, the drag coefficients for a solid sphere
or a circular cylinder that translates in a low-Reynolds-number micropolar flow are determined and compared with
those corresponding to Newtonian flow. The drag coefficients in a micropolar fluid are greater than those in a
Newtonian fluid.
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1 Introduction

The physical mechanisms of heat, mass, and momentum transport in small-scale units may differ significantly
from those in macroscale equipment [1,2]. Fundamental and applied investigations of microscale phenomena in
fluid mechanics are motivated by developments in the areas of biological molecular machinery, atherogenesis,
microcirculation, and microfluidics. At scales larger than a micron, the fluid can be treated as a continuum, and the
flow is governed by the Navier–Stokes equation. The continuum model assumes that the properties of the mate-
rial vary continuously throughout the flow domain. In Newtonian continuum mechanics, the fluid is modeled as a
dense aggregate of particles, possessing mass, and translational velocity. However, the field equation, such as the
Navier–Stokes equation, does not account for the rotational effects of the fluid micro-constituents.

In the theory of micropolar fluids [3], rigid particles contained in a small volume element can rotate about the
centroid of the volume element. The rotation is described by an independent micro-rotation vector. Micropolar
fluids can support body couples and exhibit microrotational effects. The theory of micropolar fluids has shown
promise for predicting fluid behaviour at microscale. Papautsky et al. [1] found that a numerical model for water
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flow in microchannels based on the theory of micropolar fluids gave better predictions of experimental results than
those obtained using the Navier–Stokes equation. Micropolar fluids can model anisotropic fluids, liquid crystals
with rigid molecules, magnetic fluids, clouds with dust, muddy fluids, and some biological fluids [3]. In view of
their potential application in microscale fluid mechanics and non-Newtonian fluid mechanics, it is worth exploring
new fundamental solutions.

The fundamental solutions for Stokes flow [4] and Oseen flow [5] due to a point force are commonly known
as the Stokeslet and the Oseenlet. The fundamental solution due to a point force in a steady Stokes flow was first
derived, however, by the Nobel Laureate, Lorentz, as far back as 1896 [6]. This solution is now known by the name
Stokeslet, although Stokes never knew about it. The name Stokeslet was coined by Hancock in 1953 [7]. Obviously,
Hancock was unaware of this work of Lorentz. Had he known about it, he might have opted for Lorentzlet instead
of Stokeslet. There are many who believe that the steady Hancock-named Stokeslet was derived by Ladyzhenskaya
in 1961 [8] by using Fourier-transform methods. A number of more appropriate references concerning the steady
Stokeslet and Oseenlet can be found in [9]. The closed-form fundamental solutions for generalized unsteady Stokes
and Oseen flows associated with arbitrary time-dependent translational and rotational motions have been derived
by Shu and Chwang in 2001 [10]. In micropolar fluids, the fundamental microrotation solutions due to a point
force are the micropolar Stokeslet and micropolar Oseenlet, and those due to a point couple are the micropolar
Stokes couplet and micropolar Oseen couplet. Such fundamental solutions do not exist in Newtonian flow due to
the absence of microrotation velocity fields.

Ramkissoon and Majumdar [11] linearized the governing equations of micropolar fluids and applied Fourier
transforms to obtain the three-dimensional micropolar Stokeslet. Olmstead and Majumdar [12] derived the two-
dimensional micropolar Oseenlet and micropolar Oseen couplet. In this paper, we derive fundamental Stokes and
Oseen solutions for micropolar flows in three dimensions, so that the point force and point couple can be prescribed
in any direction. Corresponding results for two-dimensional flows are also presented.

2 Stokes and Oseen flows of a micropolar fluid due to a point force

Consider a point force in an unbounded, quiescent, incompressible micropolar fluid. Without loss of generality, the
point force is placed at the origin, and the free-stream velocity U∞ is taken to be (U∞, 0, 0). The resultant fluid
flow is assumed steady. Based on the Oseen approximation, the governing equations reduce to (see [13])

∇ · u = 0, (1)

ρU∞
∂u
∂x1

= −∇p − (µ + µr)∇ × ∇ × u + 2µr∇ × v + ρFδ(x), (2)

ρIrU∞
∂v
∂x1

= 2µr (∇ × u − 2v) − cr∇ × ∇ × v + cm∇ (∇ · v) , (3)

where ρ is the fluid density, Ir is the micro-inertia, µ, µr , cr and cm are the Newtonian, microrotational, and two
angular viscosities, respectively, and F is a constant vector. In the Eq. (3), the divergence of v is assumed zero, which
is verified in the latter part of this section. The pressure, p, translational velocity, u, and microrotation velocity, v,
are required to decay as |x| → ∞ in an unbounded flow, as follows:

p → 0, |u| → 0, |v| → 0 as |x| → ∞.

Suppose that f is an absolutely integrable function that decays at infinity of R
n. The n-dimensional complex Fourier

transform of the function f is defined by

f̂ (ξ) = F {f (x)} = (2π)−
n
2

∫
Rn

f (x) e−iξ ·xdx,

where ξ is the transformed variable of x, ξ · x = ξ1x1 + · · · + ξnxn, and i is the imaginary unit, i = √−1. The
divergence of (2) yields

∇2p = ρ∇ · [Fδ(x)] , (4)
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Fundamental solutions for micropolar fluids 71

which states that p is harmonic everywhere except at the pole. To solve (4) for p, we take the Fourier transform,
finding

p̂ = −ρ (iξ) · F

[
(2π)− n

2

ξ2

]
.

Taking the inverse Fourier transform, we find

p =

⎧⎪⎪⎨
⎪⎪⎩

ρ∇ ·
(

F
1

2π
ln r

)
= ρ

2π

F · x
r2 n = 2,

ρ∇ ·
(

−F
1

4πr

)
= ρ

4π

F · x
r3 n = 3.

(5)

Stokes and Oseen flows due to a point force have the same pressure field, regardless of whether the fluid is Newtonian
or micropolar. From (3), we have

∇ × u = 2v + cr

2µr

∇ × ∇ × v + ρIr

2µr

(U∞ · ∇) v. (6)

Taking the curl of (2) gives

− (µ + µr)∇ × ∇ × ∇ × u + 2µr∇ × ∇ × v + ρ∇ × [Fδ(x)] = ρ (U∞ · ∇) (∇ × u) . (7)

Substituting (6) in (7), we derive a partial differential vector equation containing only one unknown, v,(
∇4 − λ2∇2 − a1∇2 ∂

∂x1
+ a2

∂

∂x1
+ a3

∂2

∂x2
1

)
v = a4∇ × [Fδ (x)] , (8)

where

λ2 = 4µrµ

cr (µ + µr)
, a1 = ρU∞

(
Ir

cr

+ 1

µ + µr

)
, a2 = 4ρU∞µr

cr (µ + µr)
, a3 = ρ2U2∞Ir

cr (µ + µr)

and a4 = 2ρµr

cr (µ + µr)
.

To solve partial differential equations of higher order, such as (8), we may factorize the higher-order partial
differential operator into products of lower order [14]. This method was used by Olmstead and Majumdar [12].
Formally, it is proposed that

L =
(

∇2 + A1
∂

∂x1
+ B1

)(
∇2 + A2

∂

∂x1
+ B2

)
, (9)

where L is a fourth-order partial differential operator, and A1, A2, B1 and B2 are constants. While the method
of factorization is attractive, a certain relationship between the parameters must exist for L to admit the desired
factorization. To factorize the differential operator in (8), the following must be true:

L = ∇4 − λ2∇2 − a1∇2 ∂

∂x1
+ a2

∂

∂x1
+ a3

∂2

∂x2
1

= ∇4 + (B1 + B2) ∇2 + (A1 + A2) ∇2 ∂

∂x1
+ (A1B2 + B1A2)

∂

∂x1
+ A1A2

∂2

∂x2
1

+ B1B2. (10)

Consequently, it is required that

B1 + B2 = −λ2, A1 + A2 = −a1, A1B2 + B1A2 = a2, A1A2 = a3, B1B2 = 0.

We have five equations and only four unknowns. To expedite the solution, the value of B1 is taken to be zero since
B1B2 = 0. Therefore,

B1 = 0 ⇒ B2 = −λ2.
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Then, from A1B2 + B1A2 = a2,

A1 = −a2

λ2 = −ρU∞
µ

.

Consequently,

A2 = a3

A1
= − ρµU∞Ir

cr (µ + µr)
.

However, A1 + A2 = −a1, or

ρU∞
µ

+ ρµU∞Ir

cr (µ + µr)
= ρU∞

(
Ir

cr

+ 1

µ + µr

)
,

which gives

Ir = cr

µ
. (11)

Hence, the partial differential operator in (10) can be factorized as follows:

∇4 − λ2∇2 − a1∇2 ∂

∂x1
+ a2

∂

∂x1
+ a3

∂2

∂x2
1

=
(

∇2 − a2

λ2

∂

∂x1

) (
∇2 − a3λ

2

a2

∂

∂x1
− λ2

)
.

This allows (8) to be rewritten as(
∇2 − 2n0

∂

∂x1

) (
∇2 − 2m0

∂

∂x1
− λ2

)
v = a4∇ × [Fδ (x)] , (12)

where 2n0 = ρU∞/µ and 2m0 = ρU∞/(µ + µr). The above factorization is valid under the physical constraint
of the parameters given by (11). To solve (12) for v, it is convenient to take the Fourier transform.(
ξ2 + i2n0ξ1

) (
ξ2 + i2m0ξ1 + λ2

)
v̂ = (2π)−

n
2 a4 (iξ) × F,

which gives

v̂ = (2π)− n
2 a4 (iξ) × F(

ξ2 + i2n0ξ1
) (

ξ2 + i2m0ξ1 + λ2
) . (13)

The inverse Fourier transform gives

v = a4∇ ×
{

FF −1

[
(2π)− n

2(
ξ2 + i2n0ξ1

) (
ξ2 + i2m0ξ1 + λ2

)
]}

,

which is the micropolar Oseenlet of v (see Appendix)

v =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2µ

cr

∇ ×
{

F
∫ ∞

x1

eα0(x1−t) en0tK0 (n0s) − em0tK0 (w0s)

2πU∞
dt

}
, n = 2,

2µ

cr

∇ ×
[

F
∫ ∞

x1

eα0(x1−t) en0(t−s) − em0t−w0s

4πU∞s
dt

]
, n = 3,

(14)

whereα0 = λ2/2 (n0 − m0) = 4µ2/ρU∞cr ,w0 =
√

m2
0 + λ2, s =

√
t2 + ∑n

j=2 x2
j , andK0 (ξ) = ∫ ∞

0 e−ξ cosh τ dτ

is the modified Bessel function of the second kind. Because v is expressed as the curl of the product of a scalar
function and the constant vector F, the divergence of v is zero. Hence, the assumption made earlier about the
divergence of v being zero is satisfied.

As U∞ → 0, Eq. (14) produces the micropolar Stokeslet,

v =

⎧⎪⎨
⎪⎩

− ρ

4πµ
∇ × {F [ln r + K0 (λr)]} n = 2,

ρ

8πµ
∇ ×

(
F 1−e−λ r

r

)
n = 3.

(15)
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Equation (15) gives the microrotation velocity in the presence of a point force. The curl of (3) gives the curl of the
curl of u as

∇ × ∇ × u = 2∇ × v + cr

2µr

∇ × ∇ × ∇ × v + ρIrU∞
2µr

∂

∂x1
(∇ × v) ,

which can be written as

−∇2u =
(

2 − cr

2µr

∇2 + ρIrU∞
2µr

∂

∂x1

)
(∇ × v) ,

using vector identities (1) and the assumption that the divergence of v is zero. Taking the Fourier transform, we find

ξ2û =
(

2 + cr

2µr

ξ2 + i
ρIrU∞

2µr

ξ1

)
(iξ) × v̂.

Substituting (11) and (13) in the above equation leads to

û = (2π)−
n
2 a4 (iξ) × (iξ) ×

{
F

[
2

ξ2
(
ξ2 + i2n0ξ1

) (
ξ2 + i2m0ξ1 + λ2

) + cr

2µr

1

ξ2
(
ξ2 + i2m0ξ1 + λ2

)
]}

.

The inverse Fourier transform of this expression yields u in the form

u = a4∇ × ∇ ×
{

2FF −1

[
(2π)− n

2

ξ2
(
ξ2 + i2n0ξ1

) (
ξ2 + i2m0ξ1 + λ2

)
]

+ cr

2µr

FF −1

[
(2π)− n

2

ξ2
(
ξ2 + i2m0ξ1 + λ2

)
]}

.

Finally, we find the translational velocity u is given by the micropolar Oseenlet of u (see Appendix)

u =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∇ × ∇ ×
{

F
∫ ∞

x1

[
1 − eα0(x1−t)

]
en0tK0 (n0s) + eα0(x1−t)em0tK0 (w0s) + ln s

2πU∞
dt

}
, n = 2,

∇ × ∇ ×
{

F
∫ ∞

x1

[
1 − eα0(x1−t)

]
en0(t−s) + eα0(x1−t)em0t−w0s − 1

4πU∞s
dt

}
. n = 3.

(16)

In the limit µr → 0, the translational velocity and microrotation velocity fields decouple. Then, m0 → n0, w0 → n0,
and the expression (16) of u simplifies to

u =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∇ × ∇ ×
[

F
∫ ∞

x1

en0tK0 (n0s) + ln s

2πU∞
dt

]
n = 2,

∇ × ∇ ×
[

F
∫ ∞

x1

en0(t−s) − 1

4πU∞s
dt

]
n = 3.

(17)

We see that the Newtonian Oseenlet is recovered. In the limit U∞ → 0, the micropolar Oseenlet of u in (16)
becomes the micropolar Stokeslet of u,

u =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∇ × ∇ ×
{

F
[
ρr2ln r

8πµ
+ ρcr

8µ2π
(ln r + K0 (λr))

]}
n = 2,

−∇ × ∇ ×
{

F
[

ρr

8πµ
+ ρcr

16µ2π

(
1 − e−λr

r

)]}
n = 3.

(18)

The solution of u for a micropolar fluid is much more complicated than that for a Newtonian fluid.

3 Stokes and Oseen flows of a micropolar fluid due to a point couple

Consider a point couple in an unbounded quiescent, incompressible micropolar fluid. Based on the Oseen approxi-
mation, the governing equations can be linearized (see [13]) as

∇ · u = 0, (19)

123
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ρU∞
∂u
∂x1

= −∇p − (µ + µr)∇ × ∇ × u + 2µr∇ × v, (20)

ρIrU∞
∂v
∂x1

= 2µr (∇ × u − 2v) − cr∇ × ∇ × v + cm∇ (∇ · v) + ρTδ (x) , (21)

where ρTδ (x) is the point couple, T being a constant vector. Without loss of generality, the point couple is assumed
to be positioned at the origin. We begin by taking the divergence of (20), which states

∇2p = 0.

Because p → 0 as |x| → ∞, the pressure field p is such that

p = 0.

This reduces the gradient of p in (20) to zero.
To obtain the translational velocity field u, we take the curl of (21),

cr∇2a − 2µr∇2u − 4µra + ρ∇ × [Tδ (x)] = ρIrU∞
∂a
∂x1

, (22)

where a = ∇ × v. Vector identities and (19) were used to express the curl of (21) in the above form. To express
(22) in terms of u alone, we make use of (20), which can be rewritten as

a = 1

2µr

[
ρU∞

∂

∂x1
− (µ + µr)∇2

]
u. (23)

Substituting (23) in (22) leads to(
∇4 − λ2∇2 − a1

∂

∂x1
∇2 + a2

∂

∂x1
+ a3

∂2

∂x2
1

)
u = a4∇ × [Tδ (x)] . (24)

Because (24) and (8) are identical in form, we can factorize the partial differential operator, as in (12), under the
physical constraint given by (11). Then, we can write(

∇2 − 2n0
∂

∂x1

)(
∇2 − 2m0

∂

∂x1
− λ2

)
u = a4∇ × [Tδ (x)] ,

whose Fourier transform is

û = (2π)− n
2 a4 (iξ) × T(

ξ2 + i2n0ξ1
) (

ξ2 + i2m0ξ1 + λ2
) . (25)

The inverse Fourier transform of û yields the micropolar Oseen couplet of u (see Appendix)

u =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2µ

cr

∇ ×
{

T
∫ ∞

x1

eα0(x1−t) en0tK0 (n0s) − em0tK0 (w0s)

2πU∞
dt

}
n = 2,

2µ

cr

∇ ×
[

T
∫ ∞

x1

eα0(x1−t) en0(t−s) − em0t−w0s

4πU∞s
dt

]
n = 3.

(26)

It is not surprising that the micropolar Oseen couplet of u in (26) is similar to the micropolar Oseenlet of v in (14),
except that the former is caused by a point couple, while the latter is due to a point force.

In the limit U∞ → 0, the micropolar Oseen couplet of u in (26) becomes the micropolar Stokes couplet of u,

u =

⎧⎪⎨
⎪⎩

− ρ

4πµ
∇ × {T [ln r + K0 (λr)]} n = 2,

ρ

8πµ
∇ ×

(
T

1 − e−λr

r

)
n = 3.

(27)

We take the divergence of (21) to evaluate the divergence of v and find(
∇2 − 2c1

∂

∂x1
− λ2

0

)
f = −c2∇ · [Tδ (x)] , (28)
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where f = ∇ · v, 2c1 = ρIrU∞/cm, λ2
0 = 4µr/cm and c2 = ρ/cm. To expedite the solution procedure, we take

the Fourier transform of (28), and find

f̂ = (2π)− n
2 c2 (iξ) · T

ξ2 + i2c1ξ1 + λ2
0

, (29)

whose inverse Fourier transform is

f =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c2∇ ·
[

T
ec1x1K0 (w1r)

2π

]
n = 2,

c2∇ ·
[

T
e(c1x1−w1r)

4πr

]
n = 3,

where w1 =
√

c2
1 + λ2

0.
To determine the curl of v, we take the Fourier transform of (23) and substitute (25) to find

â = a4 (µ + µr)

2µr

(2π)− n
2
(
ξ2 + i2m0ξ1

)
(iξ) × T(

ξ2 + i2n0ξ1
) (

ξ2 + i2m0ξ1 + λ2
) . (30)

To relate f to a, we make use of the vector identity:

∇2v = ∇f − ∇ × a,

whose Fourier transform is

−ξ2v̂ = (iξ) f̂ − (iξ) × â.

We substitute (29) and (30) in the above equation to express v̂ in terms of variables (ξ1, ξ2, ξ3),

v̂ = c2 (iξ) (iξ) ·
[

− (2π)− n
2 T

ξ2
(
ξ2 + i2c1ξ1 + λ2

0

)
]

+ a4 (µ + µr)

2µr

(iξ) × (iξ)

×
[

(2π)− n
2 T

ξ2
(
ξ2 + i2n0ξ1

) − λ2 (2π)− n
2 T

ξ2
(
ξ2 + i2n0ξ1

) (
ξ2 + i2m0ξ1 + λ2

)
]

.

The inverse Fourier transform of v̂ is the micropolar Oseen couplet of v (see Appendix)

v =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

µ

cr

∇∇ ·
[

T
∫ x1

−∞
e−β0(x1−t) ec1tK0 (w1s) + ln s

2πU∞
dt

]

− µ

cr

∇×∇×
{

T
∫ x1

−∞
e−β0(x1−t) em0tK0 (w0s) + ln s

2πU∞
dt

+T
∫ ∞

x1

eα0(x1−t) em0tK0 (w0s) − en0tK0 (n0s)

2πU∞
dt

}
n = 2,

µ

cr

∇∇ ·
[

T
∫ x1

−∞
e−β0(x1−t) ec1t−w1s − 1

4πU∞s
dt

]

− µ

cr

∇ × ∇ ×
{

T
∫ x1

−∞
e−β0(x1−t) em0t−w0s − 1

4πU∞s
dt + T

∫ ∞

x1

eα0(x1−t) em0t−w0s − en0(t−s)

4πU∞s
dt

}
n = 3,

(31)

where

β0 = 4µrµ

ρU∞cr

.

As U∞ → 0, Eq. (31) gives the micropolar Stokes couplet of v

v =

⎧⎪⎪⎨
⎪⎪⎩

ρ

8πµr

∇∇ · {T [ln r + K0 (λ0 r)]} − ρ (µ + µr)

8πµrµ
∇ × ∇ × {T [ln r + K0 (λr)]}, n = 2,

− ρ

16πµr

∇∇ ·
(

T
1 − e−λ0 r

r

)
+ ρ (µ + µr)

16πµrµ
∇ × ∇ ×

(
T

1 − e−λr

r

)
, n = 3.

(32)
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The three-dimensional micropolar Stokes couplet of v almost agrees with that of Eringen [3], except for the wrong
sign in the first term.

4 Drag on a translating solid sphere in a micropolar viscous flow

Consider the flow produced by a solid sphere of radius R translating with velocity U∞ in an ambient micropolar
fluid of infinite expanse. The flow due to the sphere may be obtained in terms of a point force and a potential dipole,
both placed at the center of the sphere, as in the case of Stokes flow [15,16]. Hence, the velocity is given by

u = −∇ × ∇ ×
{

F
[

ρr

8πµ
+ ρcr

16µ2π

(
1 − e−λr

r

)]}
+ B•∇∇ ρ

4πr
+ O (Re) ,

where B is the vectorial strength of the potential dipole, and Re = ρU∞2R
µ

is the Reynolds number, assumed to be
small. Requiring the boundary condition u = U∞ at r = R to be satisfied on the surface of the sphere, yields two
algebraic equations for the coefficients F and B,

ρ

8πR (µ + µr)
F − ρ

4πR3 B = U∞ [1 + O (Re)] ,
ρ

8πR3 (µ + µr)
F + 3ρ

4πR5
B = O [1 + O (Re)] ,

whose solution is

ρF = 6πR (µ + µr) U∞ [1 + O (Re)] , ρB = −πR3U∞ [1 + O(Re)] .

The drag comes exclusively from the point force. The dimensionless drag coefficient is

CD = |F|
1
2U2∞πR2

= 24

Re

µ + µr

µ
[1 + O (Re)] .

Putting µr = 0, we recover the result for the classical viscous flow

CD = |F|
1
2U2∞πR2

≈ 24

Re

.

5 Drag on a translating circular cylinder in a micropolar viscous flow

Consider the flow produced by a circular cylinder of radius R translating with velocity U∞ in an ambient micropolar
fluid of infinite expanse. The flow due to the cylinder can be obtained in terms of a two-dimensional point force
and a two-dimensional potential dipole, both placed at the center of the cylinder,

u = ∇ × ∇ ×
{

F
[
ρr2ln r

8πµ
+ ρcr

8µ2π
(ln r + K0 (λr))

]}
+ B · ∇∇

(
− ρ

2π
ln r

)
+ O(Re).

Imposing the boundary condition u = U∞ at r = R on the surface of the cylinder, we find

ρ |F| ≈ 8π (µ + µr)U∞
1 − 2γ − 2ln (Re/8)

, ρ |B| ≈ − 2πR2U∞
1 − 2γ − 2ln (Re/8)

.

The drag comes exclusively from the two-dimensional point force. The dimensionless drag coefficient is

CD = |F|
U2∞R

≈ 16π

Re

[
1 − 2γ − 2ln (Re/8)

] µ + µr

µ
.

By putting µr = 0, we recover the result for the classical two-dimensional viscous flow [17].

CD = |F|
U2∞R

≈ 16π

Re

[
1 − 2γ − 2ln (Re/8)

] .
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Table 1 A list of new
fundamental solutions
derived in this paper

Singular point Dimensionality Stokes flow Oseen flow

A point force 2D New [12]

3D [11] New

A point couple 2D New [12]

3D New New

6 Conclusions

New fundamental solutions for micropolar fluids have been derived in explicit form. The problem of two- and
three-dimensional, steady, unbounded Stokes and Oseen flows of a micropolar fluid due to a point force and a point
couple has been considered. The new fundamental solutions for Stokes and Oseen flows are the two-dimensional
micropolar Stokeslet, given by (18) and (15), the two- and three-dimensional micropolar Stokes couplet, given
by (27) and (32), the three-dimensional micropolar Oseenlet, given by (16) and (14), and the three-dimensional
micropolar Oseen couplet, given by (26) and (31). These fundamental solutions are possible due to the existence of
microrotation velocity fields in micropolar fluids. The fundamental solutions can generate further fundamental solu-
tions by successive differentiation with respect to the singular point [15,16]. A summary of available fundamental
solutions is given in Table 1.

These fundamental solutions for micropolar fluids can be used as the basic building blocks to construct new
solutions of microscale flow problems by employing the boundary-integral method or the singularity method. It
was demonstrated that these fundamental solutions can be used to calculate the drag coefficients for a translating
solid sphere and circular cylinder, respectively, in a micropolar fluid at low Reynolds numbers. The drag coefficients
in a micropolar fluid are greater than those in a Newtonian fluid by the factor (µ + µr)/µ.

Appendix

Consider the partial differential equation
(

∇2 − 2b1
∂

∂x1
− b2

)
�0 = −δ (x) ,

where b1 and b2 are two arbitrary constants. We apply the Fourier transform to obtain

�̂0 = (2π)− n
2

ξ2 + i2b1ξ1 + b2
.

Letting �0 (x; b1, b2) = eb1x1g (r; b1, b2), we obtain
(

∇2 − 2b1
∂

∂x1
− b2

)
�0 = eb1x1

[
∇2 −

(
b2

1 + b2

)]
g,

and hence[
∇2 −

(
b2

1 + b2

)]
g = −e−b1x1δ (x) .

Taking the Fourier transform of the above equation, we have

ĝ = (2π)− n
2

ξ2 + b2
1 + b2

.
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The inverse Fourier transform of ĝ is

g (r; b1, b2) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

K0

(
r

√
b2

1 + b2

)

2π
, n = 2,

e−r

√
b2

1+b2

4πr
, n = 3.

Therefore, the fundamental solution �0 (x; b1, b2) is

�0 (x; b1, b2) = F −1

{
(2π)− n

2

ξ2 + i2b1ξ1 + b2

}
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

eb1x1K0

(
r

√
b2

1 + b2

)

2π
n = 2,

eb1x1−r

√
b2

1+b2

4πr
n = 3.

In view of the properties of the Fourier transform, we find

�(x; b1, b2, b3) = F −1

[
(2π)− n

2(
ξ2 + i2b1ξ1 + b2

)
(iξ1 + b3)

]
= F −1

(
�̂0

iξ1 + b3

)

= −
∫ ∞

x1

e−b3(x1−t)eb1t g (s; b1, b2)dt

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− 1

2π

∫ ∞

x1

e−b3(x1−t)eb1tK0

(
s

√
b2

1 + b2

)
dt n = 2,

− 1

4π

∫ ∞

x1

e−b3(x1−t) eb1t−s

√
b2

1+b2

s
dt n = 3.

where s =
√

t2 + ∑n
j=2 x2

j and b3 is an arbitrary constant. To derive formulas (14), (16), (26) and (31), we perform

the inverse Fourier transform:

F −1

[
(2π)− n

2

ξ2
(
ξ2 + i2b4ξ1

) (
ξ2 + i2b5ξ1 + b6

)
]

,

where b4, b5 and b6 are three arbitrary constants. Partial fraction expansion gives

(2π)− n
2

ξ2
(
ξ2 + i2b4ξ1

) (
ξ2 + i2b5ξ1 + b6

)

= (2π)− n
2

b4b6

[
1

i2ξ1

(
1

ξ2 − 1

ξ2 + i2b4ξ1

)
− b5

i2b5ξ1 + b6

(
1

ξ2 − 1

ξ2 + i2b5ξ1 + b6

)

− b4 − b5

i2 (b5 − b4) ξ1 + b6

(
1

ξ2 + i2b4ξ1
− 1

ξ2 + i2b5ξ1 + b6

)]
.

We conclude that

F −1

[
(2π)− n

2

ξ2
(
ξ2 + i2b4ξ1

) (
ξ2 + i2b5ξ1 + b6

)
]

= 1

2b4b6

[
�(x; 0, 0, 0) − �(x; b4, 0, 0) − �

(
x; 0, 0,

b6

2b5

)

+�

(
x; b5, b6,

b6

2b5

)
+ �

(
x; b4, 0,

b6

2 (b5 − b4)

)
− �

(
x; b5, b6,

b6

2 (b5 − b4)

)]
.
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